
EE 230
 Lecture 43

Data Converters
Nonideal Effects



Engineering Issues for Using Data Converters

1. Inherent with Data Conversion Process
•

 
Amplitude Quantization

•
 
Time Quantization

(Present even with Ideal Data Converters)
2. Nonideal Components

•
 
Uneven steps

•
 
Offsets

•
 
Gain errors

•
 
Response Time

•
 
Noise

(Present to some degree in all physical Data Converters)

How do these issues ultimately impact performance ?

Review from Last Time:



Nonideal Transfer Characteristics 
Uneven Steps
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Actual transfer characteristics can vary considerably from one device to another

Review from Last Time:



Nonideal Transfer Characteristics 
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Uneven Steps

This is termed a nonlinearity in the data converter

Linearity metrics (specifications) include INL, DNL, THD and SFDR

Review from Last Time:



Integral Nonlinearity (INL)

Often expressed in LSB: 

Linearity metrics:
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Review from Last Time:



Integral Nonlinearity (INL)
Linearity metrics:
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What is an acceptable INL?

INLIDEAL = 0LSB

What is the ideal INL?

If INL<0.5LSB, it is

 

generally

 

considered acceptable

This would be the quantization error for an n-bit ADC

What is the INL of a DAC?

Varies from part to part, often close to 0.5LSB, occasionally better, but 
often worse  -

 

Given in Data Sheet

Review from Last Time:



Differential  Nonlinearity (DNL)
Linearity metrics:

INL
DNL
THD 
SFDR
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What is the IDEAL DNL of a DAC?

2
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Ideal DNL =0LSB

What is an acceptable DNL of a DAC?

If DNL<0.5LSB, it is

 

generally

 

considered acceptable
What is the INL of a DAC?

Varies from part to part, often close to 0.5LSB, occasionally better, but 
often worse  -

 

Given in Data Sheet

Review from Last Time:



Characterization of Nonlinearities
Linearity metrics:

INL
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THD 
SFDR
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Linearity Metrics for ADC and DAC are Analogous to Each Other
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Integral Nonlinearity (INL)
Linearity metrics:

INL
DNL
THD 
SFDR



Integral Nonlinearity (INL)
Linearity metrics:

INL
DNL
THD 
SFDR

What is the “gain” of an ideal ADC or an ideal DAC?

•

 

Can think of the gain as being ideally equal to 1

•

 

Thus the horizontal and vertical deviations from a fit line are about the same

•

 

For an ADC, vertical distance not defined AT transition points, horizontal 
distance only defined AT transition points



Integral Nonlinearity (INL)
Linearity metrics:

INL
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Integral Nonlinearity (INL)
Linearity metrics:

INL
DNL
THD 
SFDR

( ) ( )k TRAN FIT
INL =X k -X k

LSB

LSBF

INLINL
X

= n

LSB

REF

INLINL 2
X

≅

{ }
1 k

INL max INL
k N≤ ≤

=

INL of an ideal ADC is 0



Differential Nonlinearity (DNL)
Linearity metrics:

INL
DNL
THD 
SFDR
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Equivalent Number of Bits -ENOB 
(based upon linearity)

Generally expect INL to be less than ½

 

LSB

If INL larger than ½

 

LSB, effective resolution is less than specified resolution



Consider initially the continuous INL definition for an ADC where the INL of an 
ideal ADC is XLSB

 

/2

Assume

Define the LSB by
EQ
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 LSB n=

2

X
X

Thus EQn
LSBINL=θ2 X

Since an ideal ADC has an INL of XLSB

 

/2, express INL in terms of ideal ADC
1)

2
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Setting term in [ ] to 1, and substituting for θ, can solve for nEQ

 

to obtain
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where XLSBR is the LSB based upon the defined resolution, n.

Equivalent Number of Bits -ENOB 
(based upon linearity)
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Equivalent Number of Bits -ENOB 
(based upon linearity)
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Spectral Characterization
Linearity metrics:

INL
DNL
THD 
SFDR

INL and DNL do not give a good indicator of linearity of a data converter in 
some (many) applications

THD and SFDR are alternate ways to characterize the linearity of

 

a data converter



Spectral Characterization
Linearity metrics:

INL
DNL
THD 
SFDR
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given by
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Spectral Characterization
( )IN M

X =X sin ωt+θ
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Ak

 

,    k>1 are all spectral distortion components

Generally only first few terms are large enough to represent 
significant distortion
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Spectral Characterization
( )IN M

X =X sin ωt+θ
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Generally XM

 

is chosen nearly full-scale and input is offset by XREF

 

/2
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Direct measurement of Ak

 

terms not feasible

Ak

 

generally calculated from a large

 

number of samples of XOUT

 

(t)



Spectral Characterization

Key theorem useful for spectral characterization
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Theorem:  If a periodic signal x(t) with period T=1/f  is band-limited to frequency hf 
and if the signal is sampled N times over an integral number of periods, NP, then 
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Spectral Characterization

Key theorem useful for spectral characterization
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the sampling period. 

• This theorem is usually not stated although widely used
• Often this theorem is misunderstood or misused

• If hypothesis not exactly satisfied, major problems with trying to use this theorem
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Spectral Characterization
Key theorem useful for spectral characterization

Theorem:  If a periodic signal x(t) with period T=1/f  is band-limited to frequency hf 
and if the signal is sampled N times over an integral number of periods, NP, then 

  ( )m P

2A = X mN +1
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where ( ) 1
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 is the DFT of the sampled sequence ( ) 1

1

N

S k
x kT

−

=
 where TS is 

the sampling period. 

• Usually Np

 

is a prime number (e.g. 11, 21, 29, 31)

•

 

If N is a power of 2, the Fast Fourier Transform (FFT) is a 
computationally efficient method for calculating the DFT

• Often N=4096, 65,536, …

• FFT is available in Matlab and as subroutines for C++



Spectral Characterization
Key theorem useful for spectral characterization

Theorem:  If a periodic signal x(t) with period T=1/f  is band-limited to frequency hf 
and if the signal is sampled N times over an integral number of periods, NP, then 
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N

                          for  0 ≤ m ≤ h-1 

where ( ) 1
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 where TS is 

the sampling period. 

A0

 

, A1

 

, A2

 

, A3

 

, …

 

are the magnitudes of the  DFT elements X(0), 
X(NP

 

+1), X(2NP

 

+1), X(3NP

 

+1), …

 

respectively



Spectral Characterization



Spectral Characterization
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Example

Determine the resolution of an ideal data converter needed for an electronic scale
that can be used for weighing commodities at a grain elevator in

 

Iowa that has a 
total scale capacity of 50 tons.  Assume the scale is an electronic scale with a load 
cell whose output goes to a single ADC.

Additional information:
The State of Iowa stipulates that scales must be accurate to within ±0.1% of 

full scale

Solution:    

The accuracy requirement corresponds to  ½

 

LSB.  If 100% is full scale, then 
½

 

LSB=0.1%, thus 1LSB=0.2%   So, the resolution n must satisfy the relationship
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Example

If the data converter is 9 bits, 
i.  what is the worst-case error in the  measurement of 50 bushels of corn on this 
scale 
a)  in pounds
b) In bushels
c) in %?

Ii   If the market price of corn is $3.50/bu, what is the worst-case financial impact of 
this error?

Solution:   

Let e be the maximum error.   

9

200050 100 000 195
2 512

,
LBS

lbstons lbstone lbs
•

= = =

1195 3 48
56

.
BU

bue lbs bu
lbs

= • =

i.

3 48 100 6 9
50
. % . %

PCT

bue
bu

= • =



Example

If the data converter is 9 bits, 
i.  what is the worst-case error in the  measurement of 50 bushels of corn on this 
scale 
a)  in pounds
b) In bushels
c) in %?

Ii   If the market price of corn is $3.50/bu, what is the worst-case financial impact of 
this error?

Solution:   

Let e be the maximum error.   

3 503 48 12 20$ .. $ .
Dollars

e bu
bu

= • =
ii.



End of Lecture 43
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