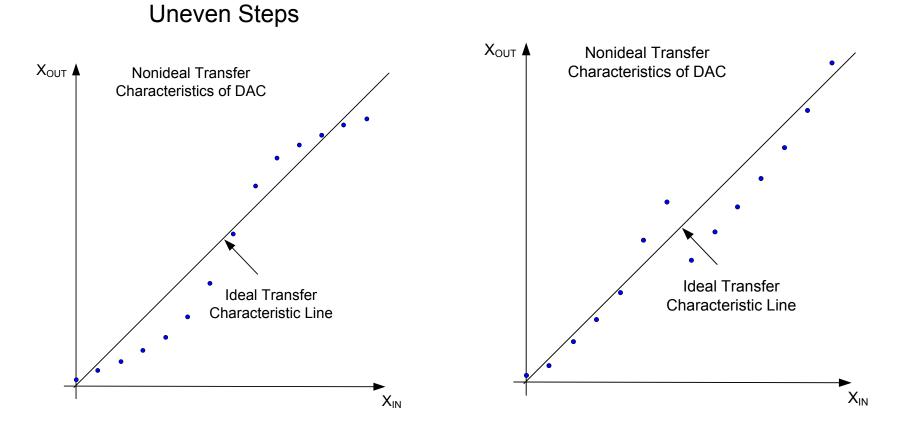
EE 230 Lecture 43

Data Converters Nonideal Effects

Engineering Issues for Using Data Converters

1. Inherent with Data Conversion Process

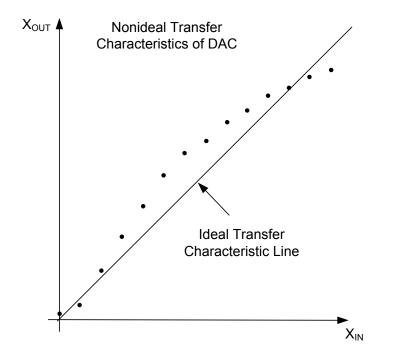
- Amplitude Quantization
- Time Quantization (Present even with Ideal Data Converters)


2. Nonideal Components

- Uneven steps
- Offsets
- Gain errors
- Response Time
- Noise

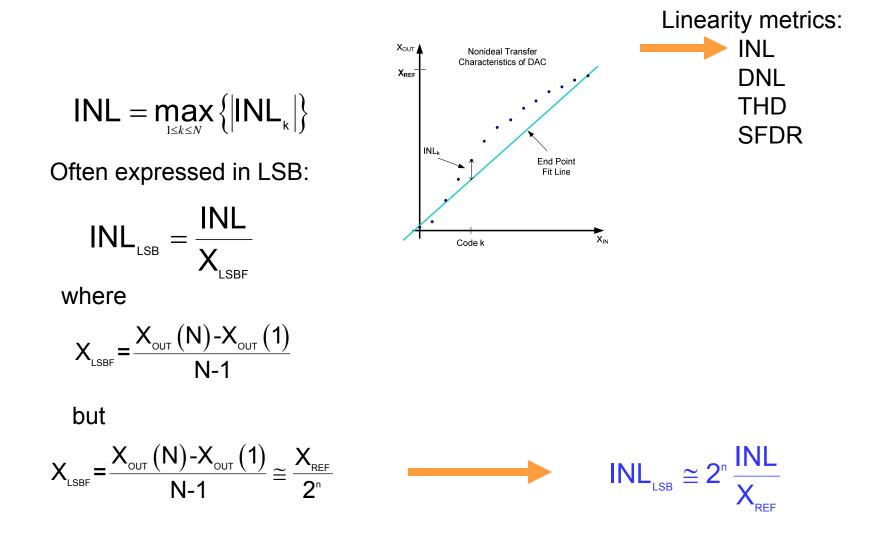
(Present to some degree in all physical Data Converters)

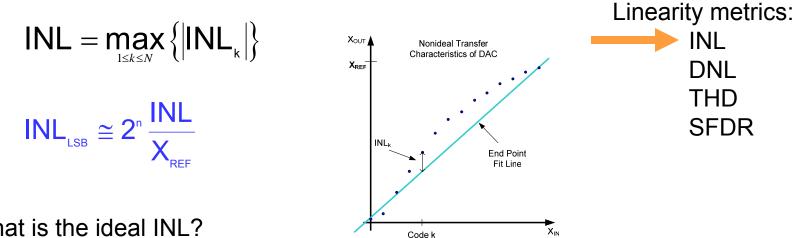
How do these issues ultimately impact performance?


Nonideal Transfer Characteristics

Actual transfer characteristics can vary considerably from one device to another

Nonideal Transfer Characteristics


Uneven Steps


This is termed a nonlinearity in the data converter

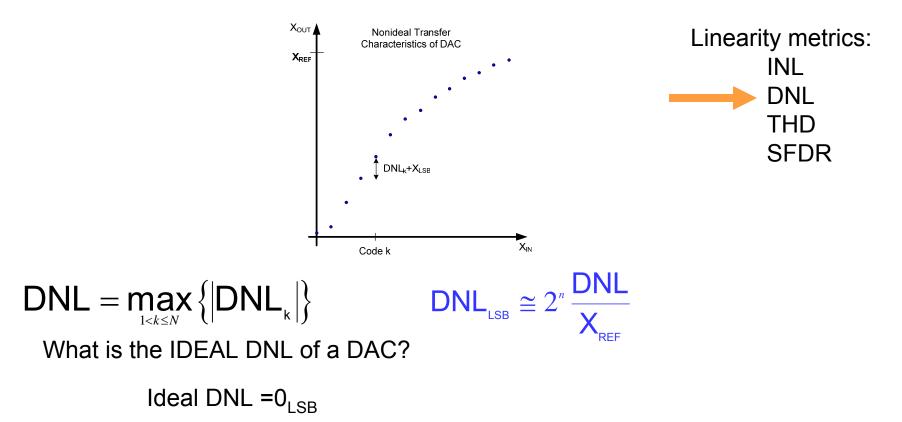
Linearity metrics (specifications) include INL, DNL, THD and SFDR

Integral Nonlinearity (INL)

Integral Nonlinearity (INL)

What is the ideal INI?

 $INL_{IDFAI} = 0_{ISB}$

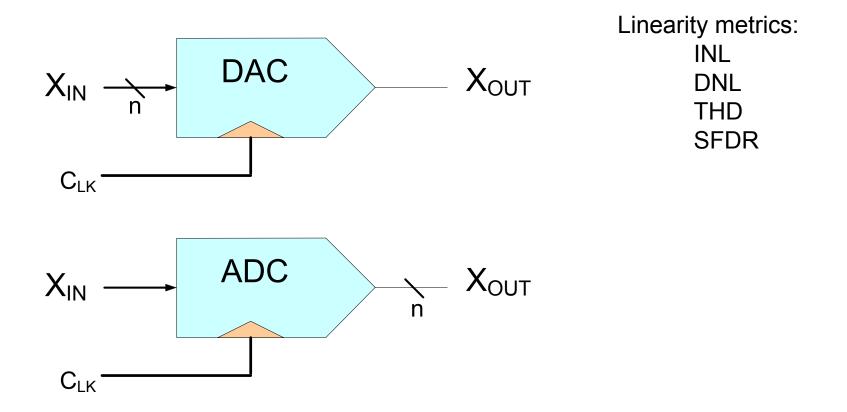

What is an acceptable INL?

If INL<0.5LSB, it is <u>generally</u> considered acceptable

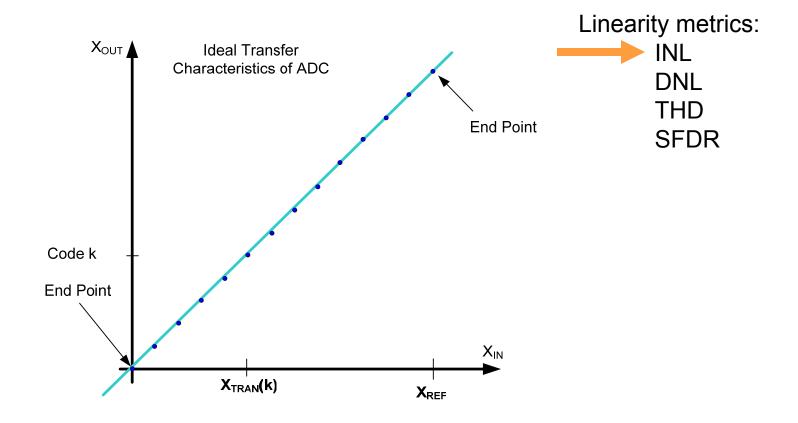
This would be the quantization error for an n-bit ADC What is the INL of a DAC?

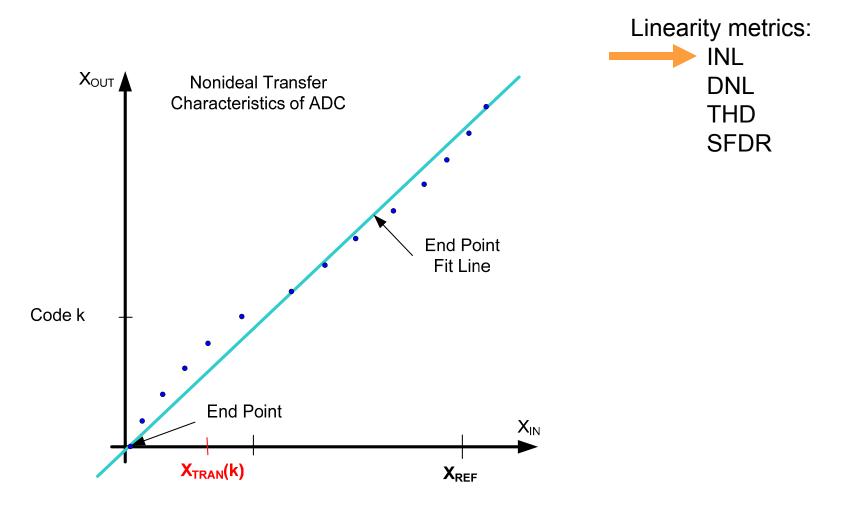
> Varies from part to part, often close to 0.5LSB, occasionally better, but often worse - Given in Data Sheet

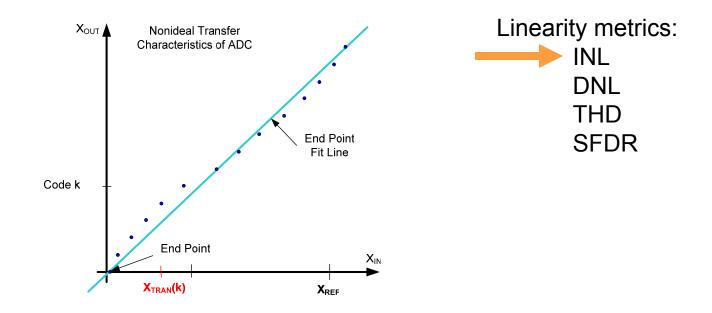
Differential Nonlinearity (DNL)



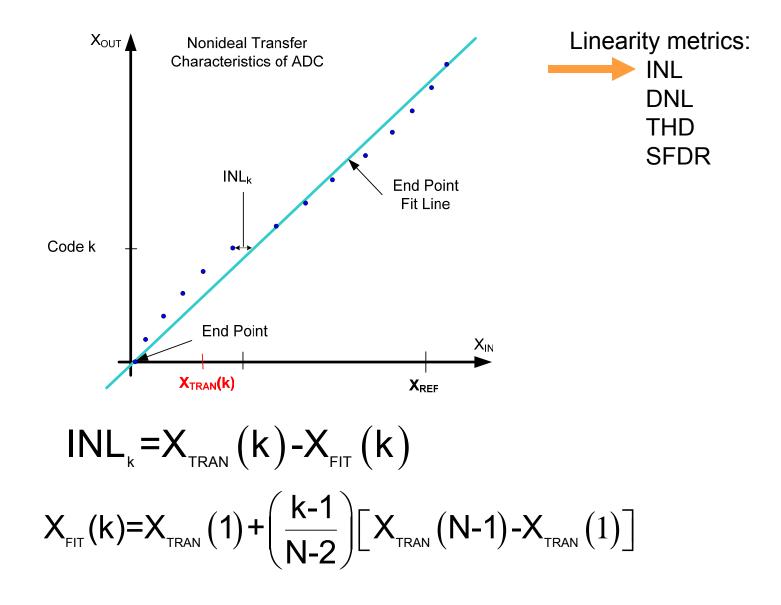
What is an acceptable DNL of a DAC?

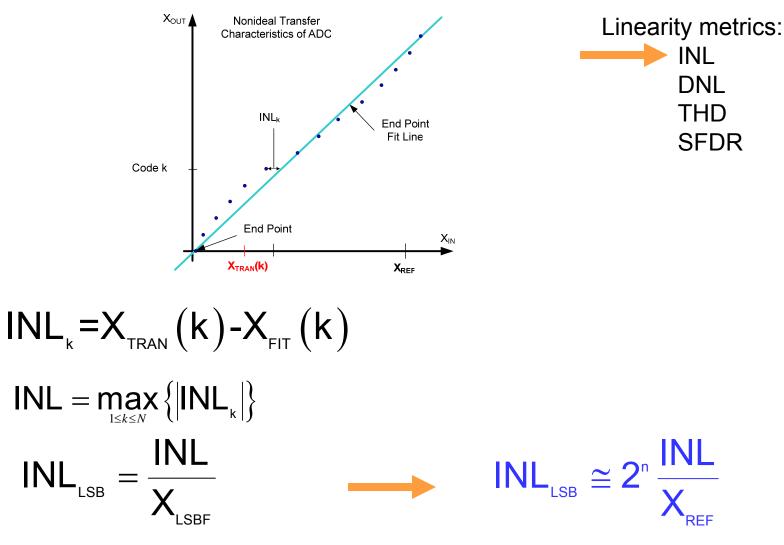

If DNL<0.5LSB, it is <u>generally</u> considered acceptable What is the INL of a DAC?


Varies from part to part, often close to 0.5LSB, occasionally better, but often worse - Given in Data Sheet

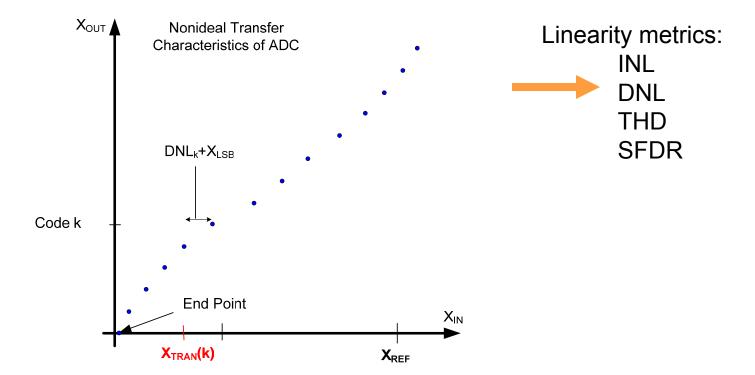

Characterization of Nonlinearities

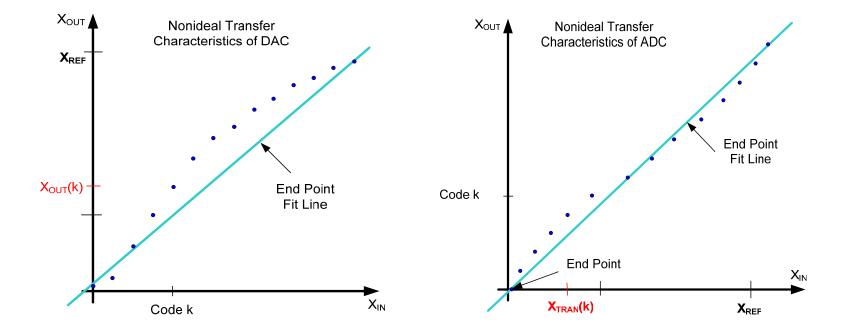
Linearity Metrics for ADC and DAC are Analogous to Each Other





What is the "gain" of an ideal ADC or an ideal DAC?


- Can think of the gain as being ideally equal to 1
- Thus the horizontal and vertical deviations from a fit line are about the same
- For an ADC, vertical distance not defined AT transition points, horizontal distance only defined AT transition points


INL of an ideal ADC is 0

Differential Nonlinearity (DNL)

$$DNL_{k} \cong X_{\text{TRANS}}(k) - X_{\text{TRANS}}(k-1) - X_{\text{LSB}}$$
$$DNL = \max_{1 < k \le N} \left\{ |DNL_{k}| \right\}$$

Equivalent Number of Bits -ENOB (based upon linearity)

Generally expect INL to be less than ½ LSB

If INL larger than 1/2 LSB, effective resolution is less than specified resolution

Equivalent Number of Bits -ENOB (based upon linearity)

Consider initially the continuous INL definition for an ADC where the INL of an ideal ADC is $X_{LSB}/2$

Assume INL= $\theta X_{REF} = \upsilon X_{LSBR} = \upsilon \frac{X_{REF}}{2^n}$

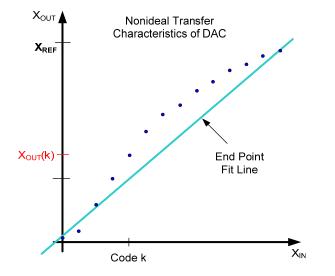
where X_{LSBR} is the LSB based upon the defined resolution, n.

 $\theta = \frac{\upsilon}{-}$

Define the LSB by

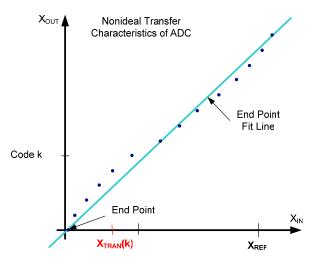
$$x_{\text{LSB}} = \frac{x_{\text{REF}}}{2^{n_{\text{EQ}}}}$$

Thus


Thus

INL=
$$\theta 2^{n_{EQ}} X_{LSE}$$

Since an ideal ADC has an INL of $X_{LSB}/2$, express INL in terms of ideal ADC $INL = \left[\theta 2^{(n_{EQ}+1)}\right] \left(\frac{X_{LSB}}{2}\right)$ Setting term in [] to 1, and substituting for θ , can solve for n_{EQ} to obtain


ENOB =
$$n_{EQ} = \log_2\left(\frac{1}{2\theta}\right) = n - 1 - \frac{\log(\nu)}{\log(2)}$$

Equivalent Number of Bits -ENOB (based upon linearity)

If v is the INL in LSB

$$\mathsf{ENOB} = \mathsf{n-1} - \frac{\mathsf{log}_{10} \nu}{\mathsf{log}_{10} 2}$$

v res

0.5	n
1	n-1
2	n-2
4	n-3
8	n-4
16	n-5

May 1999

National Semiconductor

DAC0808 8-Bit D/A Converter

General Description

The DAC0808 is an 8-bit monolithic digital-to-analog converter (DAC) featuring a full scale output current settling time of 150 ns while dissipating only 33 mW with ±5V supplies. No reference current (I_{REF}) trimming is required for most applications since the full scale output current is typically ±1 LSB of 255 I_{REF} /256. Relative accuracies of better than ±0.19% assure 8-bit monotonicity and linearity while zero level output current of less than 4 µA provides 8-bit zero accuracy for I_{REF} ≥2 mA. The power supply currents of the DAC0808 is independent of bit codes.

Features

- Relative accuracy: ±0.19% error maximum
- Full scale current match: ±1 LSB typ
- Fast settling time: 150 ns typ
- Noninverting digital inputs are TTL and CMOS compatible
- High speed multiplying input slew rate: 8 mA/µs
- Power supply voltage range: ±4.5V to ±18V
- Low power consumption: 33 mW @ ±5V

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Supply Voltage

V _{cc}	+18 V_{DC}
V _{EE}	-18 V _{DC}
Digital Input Voltage, V5–V12	–10 $V_{\rm DC}$ to +18 $V_{\rm DC}$
Applied Output Voltage, $V_{\rm O}$	-11 $V_{\rm DC}$ to +18 $V_{\rm DC}$
Reference Current, I ₁₄	5 mA
Reference Amplifier Inputs, V14, V15	V_{CC}, V_{EE}
Power Dissipation (Note 4)	1000 mW
ESD Susceptibility (Note 5)	TBD

Storage Temperature Range	-65°C to +150°C
Lead Temp. (Soldering, 10 seconds)	
Dual-In-Line Package (Plastic)	260°C
Dual-In-Line Package (Ceramic)	300°C
Surface Mount Package	
Vapor Phase (60 seconds)	215°C
Infrared (15 seconds)	220°C
Operating Ratings	
Temperature Range	$T_{MIN} \le T_A \le T_{MAX}$
DAC0808	$0 \le T_A \le +75^{\circ}C$

Electrical Characteristics

(V_{CC} = 5V, V_{EE} = -15 V_{DC}, V_{REF}/R14 = 2 mA, and all digital inputs at high logic level unless otherwise noted.)

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
E _r	Relative Accuracy (Error Relative	(Figure 4)				%
	to Full Scale I _O)					
	DAC0808LC (LM1408-8)				±0.19	%
	Settling Time to Within ½ LSB	T _A =25°C (Note 7),		150		ns
	(Includes t _{PLH})	(Figure 5)				
t _{PLH} , t _{PHL}	Propagation Delay Time	T _A = 25°C, (<i>Figure 5</i>)		30	100	ns
TCIo	Output Full Scale Current Drift			±20		ppm/°C
MSB	Digital Input Logic Levels	(Figure 3)				
V _{IH}	High Level, Logic "1"		2			V _{DC}
V _{IL}	Low Level, Logic "0"				0.8	V _{DC}

ANALOG DEVICES

2.5 V to 5.5 V, 400 µA, 2-Wire Interface, Quad Voltage Output, 8-/10-/12-Bit DACs

AD5306/AD5316/AD5326

FEATURES

AD5306: 4 buffered, 8-bit DACs in 16-lead TSSOP A version: ±1 LSB INL; B version: ±0.625 LSB INL AD5316: 4 buffered, 10-bit DACs in 16-lead TSSOP A version: ±4 LSB INL; B version: ±2.5 LSB INL AD5326: 4 buffered, 12-bit DACs in 16-lead TSSOP A version: ±16 LSB INL; B version: ±10 LSB INL Low power operation: 400 µA @ 3 V, 500 µA @ 5 V 2-wire (I²C[®]-compatible) serial interface 2.5 V to 5.5 V power supply Guaranteed monotonic by design over all codes Power-down to 90 nA @ 3 V, 300 nA @ 5 V (PD pin or bit) **Double-buffered input logic Buffered/unbuffered reference input options** Output range: 0 V to V_{REF} or 0 V to 2 V_{REF} Power-on reset to 0 V Simultaneous update of outputs (LDAC pin)

FUNCTIONAL BLOCK DIAGRAM

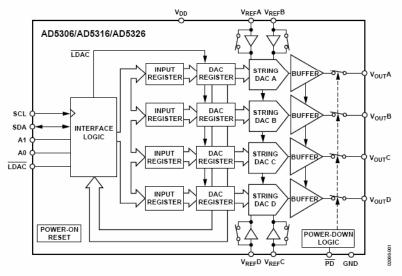
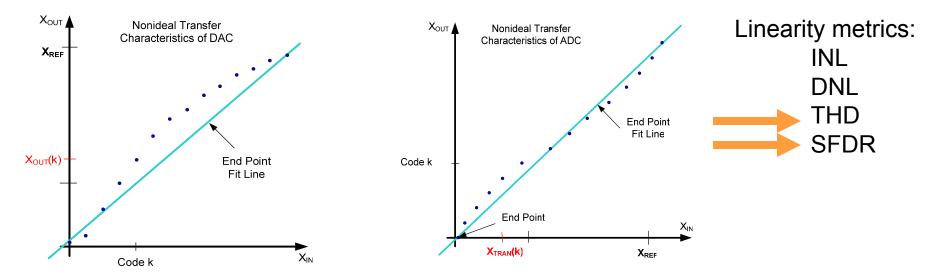


Figure 1.

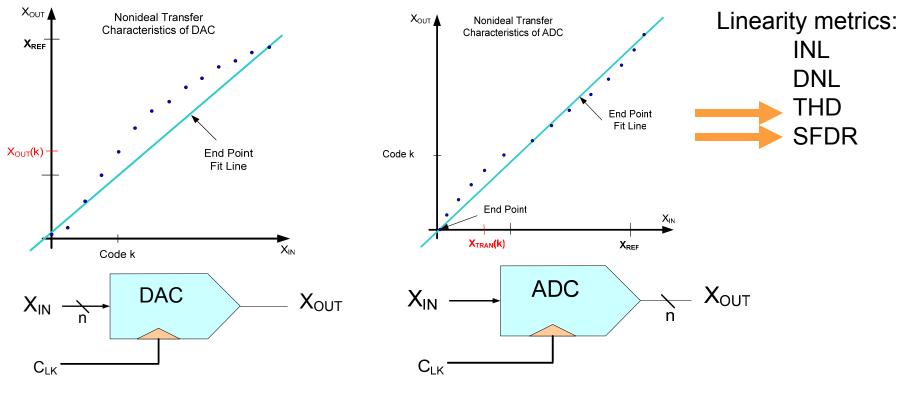
SPECIFICATIONS

 V_{DD} = 2.5 V to 5.5 V; V_{REF} = 2 V; R_L = 2 k Ω to GND; C_L = 200 pF to GND; all specifications T_{MIN} to T_{MAX} , unless otherwise noted.


Table 1.

		A Versio	n ¹		B Versior	1 1		
Parameter ²	Min	Тур	Max	Min	Тур	Max	Unit	Conditions/Comments
DC PERFORMANCE ^{3, 4}								
AD5306								
Resolution		8			8		Bits	
Relative Accuracy		±0.15	±1		±0.15	±0.625	LSB	
Differential Nonlinearity		±0.02	±0.25		±0.02	±0.25	LSB	Guaranteed monotonic by design over all codes.
AD5316								
Resolution		10			10		Bits	
Relative Accuracy		±0.5	±4		±0.5	±2.5	LSB	
Differential Nonlinearity		±0.05	±0.5		±0.05	±0.5	LSB	Guaranteed monotonic by design over all codes.
AD5326								
Resolution		12			12		Bits	
Relative Accuracy		±2	±16		±2	±10	LSB	
Differential Nonlinearity		±0.2	±1		±0.2	±1	LSB	Guaranteed monotonic by design over all codes.
Offset Error		±5	±60		±5	±60	mV	$V_{DD} = 4.5 V$, gain = 2; see Figure 4 and Figure 5.
Gain Error		±0.3	±1.25		±0.3	±1.25	% of FSR	$V_{DD} = 4.5 \text{ V}$, gain = 2; see Figure 4 and Figure 5.

AC CHARACTERISTICS


 V_{DD} = 2.5 V to 5.5 V; R_L = 2 k Ω to GND; C_L = 200 pF to GND; all specifications T_{MIN} to T_{MAX} , unless otherwise noted.

	A, B Versions ^{1, 2}				
Parameter ³	Min	Тур	Max	Unit	Conditions/Comments
Output Voltage Settling Time					$V_{REF} = V_{DD} = 5 V$
AD5306		6	8	μs	1/4 scale to 3/4 scale change (0x40 to 0xC0)
AD5316		7	9	μs	1/4 scale to 3/4 scale change (0x100 to 0x300)
AD5326		8	10	μs	1/4 scale to 3/4 scale change (0x400 to 0xC00)
Slew Rate		0.7		V∕µs	
Major-Code Change Glitch Energy		12		nV-s	1 LSB change around major carry
Digital Feedthrough		0.5		nV-s	
Digital Crosstalk		0.5		nV-s	
Analog Crosstalk		1		nV-s	
DAC-to-DAC Crosstalk		3		nV-s	
Multiplying Bandwidth		200		kHz	$V_{REF} = 2 V \pm 0.1 V p$ -p, unbuffered mode
Total Harmonic Distortion		-70		dB	$V_{REF} = 2.5 \text{ V} \pm 0.1 \text{ V} \text{ p-p}$, frequency = 10 kHz

INL and DNL do not give a good indicator of linearity of a data converter in some (many) applications

THD and SFDR are alternate ways to characterize the linearity of a data converter

 $X_{IN} = X_{M} sin(\omega t + \theta)$

If nonlinearities present, X_{OUT} given by

$$X_{out} = A_0 + A_1 \sin(\omega t + \theta + \gamma_1) + \sum_{k=2}^{\infty} A_k \sin(k\omega t + \theta + \gamma_k)$$

 $X_{IN} = X_{M} sin(\omega t + \theta)$

$$X_{out} = A_{0} + A_{1} \sin(\omega t + \theta + \gamma_{1}) + \sum_{k=2}^{\infty} A_{k} \sin(k\omega t + \theta + \gamma_{k})$$

 A_k , k>1 are all spectral distortion components

Generally only first few terms are large enough to represent significant distortion

$$THD = \frac{\sum_{k=2}^{\infty} A_k^2}{A_1^2} \qquad THD_{dB} = 10\log_{10}\left(\frac{\sum_{k=2}^{\infty} A_k^2}{A_1^2}\right)$$
$$SFDR = \frac{|A_1|}{\max_{1 \le k} \{|A_k|\}} \qquad SFDR_{dB} = 20\log_{10}\left(\frac{|A_1|}{\max_{1 \le k} \{|A_k|\}}\right)$$

 $X_{IN} = X_{M} sin(\omega t + \theta)$

$$X_{out} = A_0 + A_1 \sin(\omega t + \theta + \gamma_1) + \sum_{k=2}^{\infty} A_k \sin(k\omega t + \theta + \gamma_k)$$

Generally X_M is chosen nearly full-scale and input is offset by $X_{REF}/2$

$$X_{IN} = \frac{X_{REF}}{2} + \left(\frac{X_{REF}}{2} - \varepsilon\right) \sin(\omega t + \theta)$$

Direct measurement of A_k terms not feasible

 A_k generally calculated from a <u>large</u> number of samples of $X_{OUT}(t)$

 $X_{IN} = X_{M} sin(\omega t + \theta)$

$$X_{out} = A_0 + A_1 \sin(\omega t + \theta + \gamma_1) + \sum_{k=2}^{\infty} A_k \sin(k\omega t + \theta + \gamma_k)$$

Key theorem useful for spectral characterization

Theorem: If a periodic signal x(t) with period T=1/f is band-limited to frequency hf and if the signal is sampled N times over an integral number of periods, N_P, then

$$|A_{m}| = \frac{2}{N} |X(mN_{P}+1)|$$
 for $0 \le m \le h-1$

where $\langle X(k) \rangle_{k=1}^{N-1}$ is the DFT of the sampled sequence $\langle X(kT_s) \rangle_{k=1}^{N-1}$ where T_s is the sampling period.

$$T_s = \frac{T \cdot N_p}{N}$$

Spectral Characterization $X_{IN} = X_{M} \sin(\omega t + \theta)$ $X_{OUT} = A_{0} + A_{1} \sin(\omega t + \theta + \gamma_{1}) + \sum_{k=0}^{\infty} A_{k} \sin(k\omega t + \theta + \gamma_{k})$

Key theorem useful for spectral characterization

Theorem: If a periodic signal x(t) with period T=1/f is band-limited to frequency hf and if the signal is sampled N times over an integral number of periods, N_P, then

$$|\mathsf{A}_{\mathsf{m}}| = \frac{2}{\mathsf{N}} |\mathsf{X}(\mathsf{m}\mathsf{N}_{\mathsf{P}} + 1)| \qquad \text{for } 0 \le \mathsf{m} \le \mathsf{h} - 1$$

where $\langle X(k) \rangle_{k=1}^{N-1}$ is the DFT of the sampled sequence $\langle X(kT_s) \rangle_{k=1}^{N-1}$ where Ts is

the sampling period.

- This theorem is usually not stated although widely used
- Often this theorem is misunderstood or misused
- If hypothesis not exactly satisfied, major problems with trying to use this theorem

Spectral Characterization $X_{IN} = X_{M} \sin(\omega t + \theta)$ $X_{OUT} = A_{0} + A_{1} \sin(\omega t + \theta + \gamma_{1}) + \sum_{k=0}^{\infty} A_{k} \sin(k\omega t + \theta + \gamma_{k})$

Key theorem useful for spectral characterization

Theorem: If a periodic signal x(t) with period T=1/f is band-limited to frequency hf and if the signal is sampled N times over an integral number of periods, N_P, then

$$|\mathsf{A}_{\mathsf{m}}| = \frac{2}{\mathsf{N}} |\mathsf{X}(\mathsf{m}\mathsf{N}_{\mathsf{P}} + 1)| \qquad \text{for } 0 \le \mathsf{m} \le \mathsf{h} - 1$$

where $\langle X(k) \rangle_{k=1}^{N-1}$ is the DFT of the sampled sequence $\langle X(kT_s) \rangle_{k=1}^{N-1}$ where Ts is

the sampling period.

- This theorem is usually not stated although widely used
- Often this theorem is misunderstood or misused
- If hypothesis not exactly satisfied, major problems with trying to use this theorem

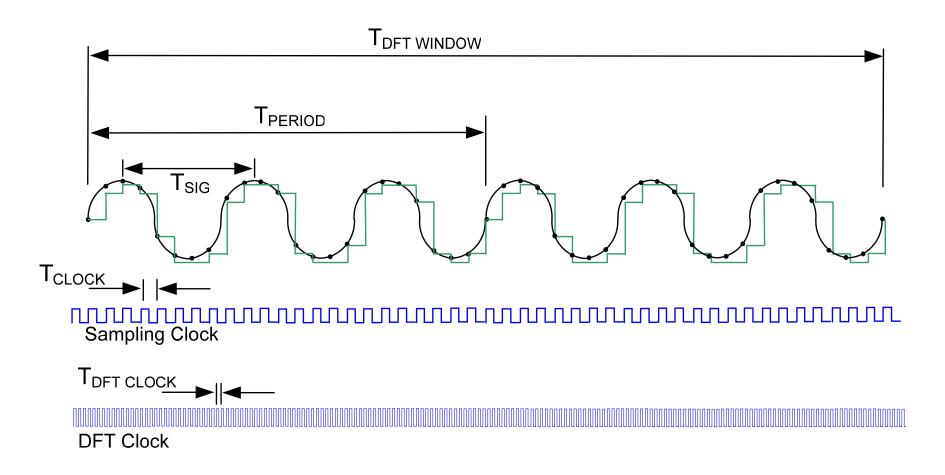
Key theorem useful for spectral characterization

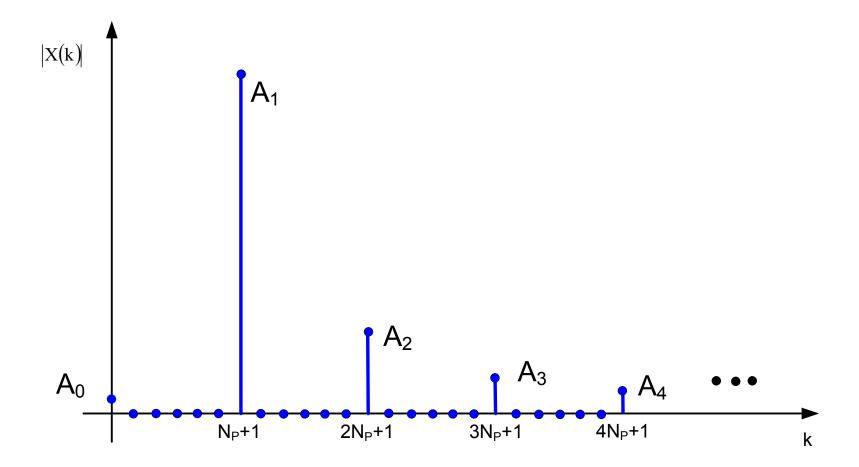
Theorem: If a periodic signal x(t) with period T=1/f is band-limited to frequency hf and if the signal is sampled N times over an integral number of periods, N_P, then

$$|A_{m}| = \frac{2}{N} |X(mN_{P}+1)|$$
 for $0 \le m \le h-1$

where $\langle X(k) \rangle_{k=1}^{N-1}$ is the DFT of the sampled sequence $\langle X(kT_s) \rangle_{k=1}^{N-1}$ where T_s is the sampling period.

- Usually N_p is a prime number (e.g. 11, 21, 29, 31)
- If N is a power of 2, the Fast Fourier Transform (FFT) is a computationally efficient method for calculating the DFT
- Often N=4096, 65,536, ...
- FFT is available in Matlab and as subroutines for C++


Key theorem useful for spectral characterization


Theorem: If a periodic signal x(t) with period T=1/f is band-limited to frequency hf and if the signal is sampled N times over an integral number of periods, N_P, then

$$|\mathsf{A}_{m}| = \frac{2}{N} |\mathsf{X}(\mathsf{mN}_{P} + 1)| \qquad \text{for } 0 \le m \le h-1$$

where $\langle X(k) \rangle_{k=1}^{N-1}$ is the DFT of the sampled sequence $\langle X(kT_s) \rangle_{k=1}^{N-1}$ where T_s is the sampling period.

 A_0 , A_1 , A_2 , A_3 , ... are the magnitudes of the DFT elements X(0), X(N_P+1), X(2N_P+1), X(3N_P+1), ... respectively

Example

Determine the resolution of an ideal data converter needed for an electronic scale that can be used for weighing commodities at a grain elevator in Iowa that has a total scale capacity of 50 tons. Assume the scale is an electronic scale with a load cell whose output goes to a single ADC.

Additional information:

The State of Iowa stipulates that scales must be accurate to within $\pm 0.1\%$ of full scale

Solution:

The accuracy requirement corresponds to $\frac{1}{2}$ LSB. If 100% is full scale, then $\frac{1}{2}$ LSB=0.1%, thus 1LSB=0.2% So, the resolution n must satisfy the relationship

$$X_{LSB} = \frac{X_{REF}}{2^{n}}$$

$$0.2\% = \frac{100\%}{2^{n}}$$

$$n = \frac{\log_{10}(500)}{\log_{10}(2)} = 8.96$$
 n=9

Example

If the data converter is 9 bits,

i. what is the worst-case error in the measurement of 50 bushels of corn on this scale

- a) in pounds
- b) In bushels
- c) in %?

li If the market price of corn is \$3.50/bu, what is the worst-case financial impact of this error?

Solution:

i.

Let e be the maximum error.

$$e_{LBS} = \frac{50tons \bullet \frac{2000lbs}{ton}}{2^{\circ}} = \frac{100,000lbs}{512} = 195lbs$$
$$e_{BU} = 195lbs \bullet \frac{1bu}{56lbs} = 3.48bu$$
$$e_{PCT} = \frac{3.48bu}{50bu} \bullet 100\% = 6.9\%$$

Example

If the data converter is 9 bits,

i. what is the worst-case error in the measurement of 50 bushels of corn on this scale

- a) in pounds
- b) In bushels
- c) in %?

li If the market price of corn is \$3.50/bu, what is the worst-case financial impact of this error?

Solution:

Let e be the maximum error.

ii. $e_{Dollars} = 3.48bu \bullet \frac{\$3.50}{bu} = \$12.20$

End of Lecture 43